Joint Compressive Sensing Framework for Sparse Data/channel Estimation in Non-orthogonal Multicarrier Scheme
نویسندگان
چکیده
Many wireless channel behavior exhibits approximate sparse modeling in time domain, therefore compressive sensing (CS) approaches are applied for more accurate wireless channel estimation than traditional least squares approach. However, the CS approach is not applied for multicarrier data information recovery because the transmitted symbol can be sparse neither in time domain nor in frequency domain. In this paper, a new Sparse Frequency Division Multiplexing (SFDM) approach is suggested to generate sparse multicarrier mapping in frequency domain based on the huge combinatorial domain. The subcarriers will be mapped in sparse manner according to data stream for taking advantages of multicarrier modulation with lower number of subcarriers. The number of activated subcarriers is designed to achieve the same as Orthogonal Frequency–Division Multiplexing data rate under lower signal-to-noise ratio. The proposed approach exploits the double sparsity of data symbol in the frequency domain, and channel sparsity in the time domain. The same CS approach for both data recovery and adaptive channel estimation in a unified sparsely manner is used. The suggested framework can be used with any non-orthogonal waveform shaping and can work efficiently without any prior information about neither the channel sparsity order nor searching for the optimum pilot patterns.
منابع مشابه
Multichannel group sparsity methods for compressive channel estimation in doubly selective multicarrier MIMO systems
We consider channel estimation within pulseshaping multicarrier multiple-input multiple-output (MIMO) systems transmitting over doubly selective MIMO channels. This setup includes MIMO orthogonal frequency-division multiplexing (MIMO-OFDM) systems as a special case. We show that the component channels tend to exhibit an approximate joint group sparsity structure in the delay-Doppler domain. We ...
متن کاملSuboptimal sparse channel estimation for multicarrier underwater acoustic communications
Multipath channels often exhibit sparse structures in multicarrier underwater acoustic (MC-UWA) communication systems. Conventional linear channel estimators, such as least squares (LS) and minimum mean square error (MMSE) are considered as optimal solutions under the assumption of rich multipath. However, they often result in low spectral efficiency due to neglect of the sparsity in multipath ...
متن کاملA New Sparse Adaptive Channel Estimation Method Based on Compressive Sensing for FBMC/OQAM Transmission Network
The conventional channel estimation methods based on a preamble for filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) systems in mobile-to-mobile sensor networks are inefficient. By utilizing the intrinsicsparsity of wireless channels, channel estimation is researched as a compressive sensing (CS) problem to improve the estimation performance. In this paper, an Ad...
متن کاملImproved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
متن کاملCompressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity
In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016